Облачный слон для больших данных: обзор 6 популярных Hadoop-решений

Большие данные, Big Data, Hadoop, Apache, администрирование, инфраструктура, облака

Мы уже рассказывали про общие достоинства и недостатки облачных Hadoop-кластеров для проектов Big Data и сравнивали локальные дистрибутивы. В продолжение этой темы, в сегодняшней статье мы подготовили для вас сравнительный обзор наиболее популярных PaaS/IaaS-решений от самых крупных иностранных (Amazon, Microsoft, Google, IBM) и отечественных (Яндекс и Mail.ru) провайдеров [1]. Сравнение облачных кластеров Hadoop от популярных PaaS-провайдеров Для сравнения выбраны следующие характеристики: состав экосистемы; средства обеспечения надежности и безопасности; примерная стоимость решения – отметим, что данная метрика является ориентировочной и зависит от конкретной конфигурации кластера, а также потребляемых ресурсов. PaaS-решение Состав экосистемы Надежность и безопасность Стоимость Amazon EMR (Amazon), интеграция со всеми веб-сервисами Amazon   Apache Hadoop 2.x, Hive, Pig, HBase, Impala, Spark, Tez, Oozie, Flink, Zeppelin, Hue, Presto, HCatalog, Machout, MXNet, Sqoop, Далее …

Большие слоны в облаках: плюсы и минусы облачных Hadoop-решений

Продолжая опровергать мифы о Hadoop, сегодня мы расскажем о том, как и где создать облачный кластер для Big Data и почему это выгодно. Концепция облачных вычислений стала популярна с 2006 года благодаря компании Amazon и постепенно распространилась на использование внешних платформ и инфраструктуры как сервисов (Platform as a Service, PaaS, и Infrastructure as a Service, IaaS) [1]. Теперь совсем не обязательно разворачивать мощный компьютерный кластер у себя на предприятии – гораздо удобнее, быстрее и дешевле обойдется аренда вычислительных мощностей и дискового пространства в специализированных центрах обработки данных (ЦОД), что весьма актуально для проектов Big Data. В этом материале мы собрали для вас общие достоинства и недостатки популярных облачных решений для Big Data на основе Hadoop от самых крупных PaaS-провайдеров: Amazon, Далее …