Быстрая аналитика больших данных в Data Lake на Apache Kudu с Kafka и Spark

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala, Data Lake, SQL, NoSQL, Hive, Kafka, Spark, Kudu

В продолжение темы про совместное использование Apache Kudu с другими технологиями Big Data, сегодня рассмотрим, как эта NoSQL-СУБД работает вместе с Kafka, Spark и Cloudera Impala для построения озера данных (Data Lake) для быстрой аналитики больших данных в режиме реального времени. Также читайте в нашей статье про особенности интеграции Apache Kudu со Spark SQL. Зачем совмещать Apache Kudu с Kafka и Spark или быстрая альтернатива традиционному Data Lake на Hadoop Рассмотрим пример типичной Big Data для потокового анализа данных на базе Data Lake, куда информация непрерывно передается из кластера Kafka. Там новые данные обогащаются историческими, чтобы конечные пользователи (BI-приложения, Data Scientist’ы и аналитики Big Data) использовали их для своих бизнес-нужд анализ. При этом производительность системы является ключевым фактором, который обеспечивает Далее …

Не только HDFS: как Apache Kudu ускоряет аналитику Big Data в Hadoop

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala

Сегодня поговорим про движки хранения больших данных в экосистеме Apache Hadoop и рассмотрим, что такое Kudu, каковы особенности применения, достоинства и недостатки этой колоночной NoSQL-СУБД. Также читайте в нашей статье, как Kudu связан с Impala, Spark и другими Big Data фреймворками. Что такое Apache Kudu и где это используется Распределенная файловая система для Apache Hadoop, HDFS отлично подходит для эффективного хранения больших данных, обеспечивая надежность записи с высокой степенью сжатия. Однако, данные в HDFS не подлежат модификации, а из-за архитектурных особенностей этого движка он не подходит для быстрой аналитики Big Data в реальном времени. Колоночная СУБД Apache HBase, работающая поверх HDFS, характеризуется противоположными свойствами: она позволяет довольно оперативно искать данные в режиме real-time, однако долго сканирует записанные объемы информации [1]. Далее …

Какой Hadoop лучше: сравнение 4 самых популярных дистрибутивов

Большие данные, Big Data, Hadoop, Apache, администрирование, инфраструктура

Проанализировав предложения крупных PaaS/IaaS-провайдеров по развертыванию облачного кластера, сегодня мы сравним 4 наиболее популярных дистрибутива Hadoop от компаний Cloudera, HortonWorks, MapR и ArenaData, которые используются при развертывании локальной инфраструктуры для проектов Big Data. Как мы уже отмечали, эти дистрибутивы распространяются бесплатно, но поддерживаются на коммерческой основе. Некоторые отличия популярных дистрибутивов Hadoop Несмотря на общую прикладную направленность, каждый из этих продуктов обладает своими уникальными особенностями: корпоративное решение ClouderaCDH включает собственную подсистему управления кластером Cloudera Manager и характеризуется высокой стоимостью технического сопровождения (около $4 тысяч в год за узел кластера), поэтому позволить ее себе могут только очень крупные компании. Cloudera Manager позволяет автоматизировать создание и модификацию локальных и облачных Hadoop-сред, отслеживать и анализировать эффективность выполнения заданий, настраивать оповещения о наступлении событий, связанных с эксплуатацией инфраструктуры распределённой обработки Далее …

Сложно, дорого, универсально: 3 мифа о Hadoop и их опровержения

Большие данные, Big Data, Hadoop, Apache, Cloudera, Hortonworks, администрирование, инфраструктура

Сегодня мы поговорим о заблуждениях насчет базового инфраструктурного понятия хранения и обработки больших данных – экосистеме Hadoop и развеем 3 самых популярных мифа об этой технологии. А также рассмотрим применение Cloudera, Hortonworks, Arenadata, MapR и HDInsight для проектов Big Data и машинного обучения (Machine Learning). Миф №1: Hadoop – это сложно Если настраивать инфраструктуру для Big Data проектов «с нуля», взяв за основу классический дистрибутив проекта Hadoop, развернуть экосистему для больших данных будет довольно трудоемким и длительным процессом, с которым справится не каждый системный администратор. Как правило, чтобы сократить время развертывания и сложность администрирования, используют готовые решения на основе Hadoop: Cloudera, Hortonworks, Arenadata, MapR или HDInsight [1]. Эти продукты уже содержат в себе не только 4 основных модуля хадуп (файловая Далее …