Как опередить спрос на модные новинки с облачными технологиями Big Data: кейс компании Boden по Apache Kafka и Snowflake

курсы по Apache Kafka, Kafka обучение, обучение большим данным, аналитика больших данных, курсы аналитик Big Data, обработка данных, большие данные, Big Data, Kafka, архитектура, предиктивная аналитика, ритейл, цифровая трансформация, цифровизация, SQL, DWH, облака

Интерактивная аналитика больших данных — одно из самых востребованных и коммерциализированных приложений для технологий Big Data. В этой статье мы рассмотрим, как крупный британский ритейлер запустил цифровую трансформацию своей ИТ-архитектуры, уходя от традиционного DWH с пакетной обработкой к событийно-стриминговой облачной платформе на базе Apache Kafka и Snowflake. Зачем модному ритейлеру Apache Kafka: постановка задачи с точки зрения бизнеса Компания Boden – это британский ритейлер одежды, основанный в 1991 году. Продажи идут онлайн и по каталогам. Впервые сайт компании boden.com был запущен еще в 1999 году и постоянно развивался. Однако, сегодня, когда шопинг и многие другие активности переходят в интернет, ритейл должен реагировать на запросы пользователей в режиме реального времени. Например, быстро реагировать на возросший интерес и всплеск спроса, вызванный появлением Далее …

Практический пример монетизации Big Data с помощью Elasticsearch и Kibana

цифровизация, цифровая трансформация, Big Data, Большие данные, предиктивная аналитика, цифровая экономика, Elasticsearch, NoSQL, ритейл

Недавно мы рассказывали, что аналитика больших данных с помощью технологий Big Data – это необязательно удел только крупных корпораций. В этой статье мы рассмотрим реальный бизнес-кейс, как извлечь выгоду из накопленных данных о своих пользователях, применяя для этого возможности NoSQL-СУБД Elasticsearch для полнотекстового поиска по полуструктурированным данным и веб-интерфейс визуализации результатов Kibana. Постановка задачи с точки зрения бизнеса Рассмотрим кейс небольшого интернет-магазина зоотоваров, где есть партия кормов для кошек и собак, у которой через несколько месяцев истекает срок годности. Чтобы оперативно реализовать его в пределах этого срока, компания решила объявить распродажу, сообщив об этом своим покупателям, общая база которых насчитывает около миллиона клиентов. Однако, корма для кошек и собак будут интересны только владельцам этих животных, а не, например, хозяевам рептилий Далее …

Как найти товарные остатки с помощью Big Data и Machine Learning: пример Леруа Мерлен

Big Data, Большие данные, обработка данных, архитектура, цифровизация, цифровая трансформация, Kafka, ритейл, Greenplum, Tarantol, SQL, NoSQL, AirFlow, NiFi, ETL, Data Lake, Machine Learning, машинное обучение

Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache Kafka, NiFi, AirFlow, Greenplum, MongoDB, Tarantool, Kubernetes и прочих технологий Big Data. Где товар или постановка задачи от бизнеса: проблемы, возможности и ограничения Проблема оперативной инвентаризации товаров, доступных для продажи прямо сейчас, актуальна для любого торгового предприятия. В Леруа Мерлен она усугублялась тем, что помимо сети крупных супермаркетов, в компании также есть склады и так называемые дарксторы. Заказы из интернет-магазинов могут собираться из всех трех торговых баз (супермаркет, склад, даркстор). Далее …

Аналитика больших данных для фармацевтов: Arenadata Hadoop и другие Big Data системы в аптечной сети АСНА

Big Data, Большие данные, обработка данных, архитектура, Hadoop, Data Lake, DWH, цифровизация, цифровая трансформация, Arenadata

В этой статье разберем кейс построения экосистемы управления Big Data с озером данных на примере федеральной фармацевтической сети — российской Ассоциации независимых аптек (АСНА). Читайте в этом материале, зачем фармацевтическому ритейлеру большие данные, с какими трудностями столкнулся этот проект цифровизации и как открытые технологии (Arenadata Hadoop, Apache Spark, NiFi и Hive), взаимодействуют с проприетарными решениеми Informatica Big Data Management и 1С, а также облачными сервисами Azure. Постановка задачи от бизнеса: проблемы, возможности и ограничения АСНА позиционирует себя не просто информационным агрегатором по локальным и сетевым аптекам, а высокотехнологичной data-driven компанией с уникальной бизнес-моделью, в которой ключевую роль играет управление данными. Поэтому обеспечение их чистоты, качества и надежности является ключевой бизнес-задачей. Поскольку количество партнеров и поставщиков постоянно увеличивается, требование к быстрой Далее …

Big Data в профиль: что такое профилирование больших данных

Big Data, Большие данные, обработка данных, архитектура, Hadoop, ETL, DWH, нефтянка, нефтегазовая промышленность, Spark

Мы уже затрагивали тему корпоративных хранилищ данных (КХД), управления мастер-данными и нормативно-справочной информаций (НСИ) в контексте технологий Big Data. В продолжение этого, сегодня рассмотрим, что такое профилирование данных, зачем это нужно, при чем тут озера данных (Data Lake) и ETL-процессы, а также прочие аспекты инженерии и аналитики больших данных. Что такое Data Profiling и как это связано с Big Data Начнем с определения: профилирование данных (Data Profiling) – это процесс исследования данных для выяснения их статистических характеристик, таких как характер распределения величин, наличие выбросов, параметры выборки. Также сюда входит предварительная оценка качества данных: поиск пропущенных значений, нарушения целостности и бизнес-логики связей между значениями полей и пр. [1]. Можно выделить следующие практические приложения, когда профилирование данных является обязательной процедурой: исследование данных Далее …

Аналитика больших данных в Elasticsearch: возможности Machine Learning в ELK Stack

Big Data, Большие данные, Elasticsearch, Machine Learning, машинное обучение, Data Lake, NoSQL, предиктивная аналитика

В этой статье рассмотрим несколько примеров по аналитике больших данных в Elasticsearch (ES), а также разберем возможности алгоритмов машинного обучения в ELK Stack. Читайте, как использовать NoSQL-СУБД ES в качестве озера данных для проверки различных бизнес-гипотез с помощью Machine Learning, показывая результаты моделирования в интерфейсе Kibana: практическая аналитика Big Data. Как анализировать Big Data в Elasticsearch: 4 реальных кейса Прежде всего, перечислим несколько бизнес-задач, для решения которых могут использоваться компоненты ELK-стека [1]: анализ поведения пользователей в разных интернет – магазинах – мониторинг и поиск взаимосвязей между различными событиями (клики, покупки, просмотры, лайки, сообщения в чатах и пр.); поиск пользователей с похожими потребностями, например, найти всех клиентов в радиусе 3 км, которые продают детские санки, чтобы сообщить об этом тем, кто Далее …

5 ключевых достоинств и 3 главных недостатка ELK-стека: разбираемся с Elasticsearch, Logstash и Kibana на реальных Big Data кейсах

Big Data, Большие данные, обработка данных, архитектура, NoSQL, ClickHouse, Elasticsearch, ELK Stack

Сегодня рассмотрим основные преимущества и недостатки ELK-стека. Читайте в этой статье, чем хороши Elasticsearch с Logsatsh и Kibana, а также каковы их основные недостатки и ограничения для использования в реальных Big Data проектах. Также мы собрали для вас несколько практических примеров, где и как используется Elasticsearch в интернет-магазинах, банках и других областях. Чем хороши Elasticsearch с Logsatsh и Kibana в Big Data: 5 главных преимуществ Основными достоинствами ELK-стека считаются следующие [1]: Масштабируемость – кластер Elasticsearch (ES) расширяется «на лету» добавлением новых серверов. При этом распределение нагрузки по узлам происходит автоматически. Отказоустойчивость — в случае сбоя кластерных узлов данные не потеряются, а будут перераспределены, и поисковая система сама продолжит работу. Операционная стабильность достигается ведением логов на каждое изменение данных в хранилище Далее …

Что такое programmatic print и при чем тут персональный маркетинг с Big Data: 4 кейса от FMCG-гигантов

Big Data, Большие данные, обработка данных, ритейл, предиктивная аналитика, машинное обучение, Machine Learning, маркетинг

Сегодня мы расскажем, что такое программная печать, зачем ритейлеры используют эту технологию и как programmatic print связана с Big Data. Читайте в нашей статье, как IKEA, «Рив Гош», «Ив Роше» и Bonprix используют Big Data для персонального маркетинга в своих рекламных кампаниях, а также повышают лояльность клиентов и стимулируют продажи с помощью Machine Learning. Что такое программная печать: персональный маркетинг как компромисс между онлайн и оффлайн Programmatic print – это новый подход к персонализированному маркетингу, который объединяет онлайн-предложения с печатными носителями (листовки, журналы, купоны и пр). К примеру, пользователь посмотрел товар в интернет магазине, прложил его в корзину, но не завершил покупку. В течение 2-х суток этот клиент найдет в своем почтовом ящике листовку с рекламным предложением тех товаров, которыми Далее …

Видеоаналитика с Machine Learning в ритейле: персональный маркетинг vs 152-ФЗ

Big Data, Большие данные, обработка данных, ритейл, предиктивная аналитика, интернет вещей, Internet of Things, IoT, IIoT, машинное обучение, Machine Learning, видеонаблюдение, FMCG

В продолжение темы про использование технологий Big Data и Machine Learning в FMCG-бизнесе, сегодня мы поговорим, как распознавание лиц помогает сформировать персональные маркетинговые предложения и насколько это законно. Разбираемся с видеоаналитикой и 152-ФЗ «О персональных данных» на примерах отечественных и зарубежных ритейлеров. От воров до VIP-клиентов: 5 примеров распознавания лиц в FMCG Вчера мы упоминали, что современные видеоаналитики с мощными алгоритмами Machine Learning – это отличный инструмент персонализированного маркетинга, который позволяет сформировать рекламное предложение специально для конкретного человека, с учетом его интересов, потребностей и финансовых возможностей. Примечательно, что распознавание лиц уже достаточно широко используется в ритейле и сфере услуг. Например, в международном финансовом центре Сеула камеры на информационных стендах в реальном времени определяют возраст и пол человека, формируя рекламное предложение соответственно выявленным Далее …

Как видеоаналитика Big Data с Machine Learning приносит деньги: 7 примеров FMCG

Big Data, Большие данные, обработка данных, ритейл, предиктивная аналитика, интернет вещей, Internet of Things, IoT, IIoT, машинное обучение, Machine Learning, видеоаналитика, видеонаблюдение, FMCG

Современное видеонаблюдение в ритейле – это не только обнаружение магазинных воришек, а полноценная аналитика Big Data с мощными алгоритмами Machine Learning для оперативного и стратегического управления. В этой статье мы приготовили для вас 7 сценариев практического использования технологий видеоаналитики в FMCG-секторе с реальными кейсами их внедрения в России на примере торговых сетей «Магнит», «Верный» и X5 Retail Group. Что такое видеоаналитика или зачем вам камера с Big Data и Machine Learning Отечественный рынок видеоаналитики непрерывно растет: ожидается, что к 2025 году его объем составит 51,75 миллиарда рублей, что в 2,75 раз больше аналогичного показателя 2019 года. При этом современные системы видеонаблюдения – это не просто камеры, а полноценные программно-аппаратные комплексы с набором интеллектуальных задач, таких как [1]: детектирование событий; подсчет Далее …