Как опередить спрос на модные новинки с облачными технологиями Big Data: кейс компании Boden по Apache Kafka и Snowflake

курсы по Apache Kafka, Kafka обучение, обучение большим данным, аналитика больших данных, курсы аналитик Big Data, обработка данных, большие данные, Big Data, Kafka, архитектура, предиктивная аналитика, ритейл, цифровая трансформация, цифровизация, SQL, DWH, облака

Интерактивная аналитика больших данных — одно из самых востребованных и коммерциализированных приложений для технологий Big Data. В этой статье мы рассмотрим, как крупный британский ритейлер запустил цифровую трансформацию своей ИТ-архитектуры, уходя от традиционного DWH с пакетной обработкой к событийно-стриминговой облачной платформе на базе Apache Kafka и Snowflake. Зачем модному ритейлеру Apache Kafka: постановка задачи с точки зрения бизнеса Компания Boden – это британский ритейлер одежды, основанный в 1991 году. Продажи идут онлайн и по каталогам. Впервые сайт компании boden.com был запущен еще в 1999 году и постоянно развивался. Однако, сегодня, когда шопинг и многие другие активности переходят в интернет, ритейл должен реагировать на запросы пользователей в режиме реального времени. Например, быстро реагировать на возросший интерес и всплеск спроса, вызванный появлением Далее …

Как внедрить MLOps: краткое пошаговое руководство

цифровизация, цифровая трансформация, Big Data, Большие данные, Data Science, машинное обучение, Machine Learning, Agile, DevOps, MLOps

Рассказав, как оценить уровень зрелости Machine Learning Operations по модели Google или методике GigaOm, сегодня мы поговорим про этапы и особенности практического внедрения MLOps в корпоративные процессы. Читайте далее, какие организационные мероприятия и технические средства необходимы для непрерывного управления жизненным циклом машинного обучения в промышленной эксплуатации (production). 2 направления для внедрения MLOps Напомним, MLOps – это культура и набор практик для автоматизации комплексного управления жизненным циклом систем машинного обучения, от разработки (Development) до эксплуатации (Operations) всех компонентов: ML-модели, программный код и инфраструктура развертывания. MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. Таким образом, практическое внедрение MLOps следует вести сразу по 2-м направлениям: организационное, что предполагает адаптацию принципов Agile к корпоративной культуре и частичную перестройку Далее …

Насколько созрел ваш MLOps: многокритериальная 5-уровневая модель зрелости Machine Learning Operations

цифровизация, цифровая трансформация, Big Data, Большие данные, Data Science, машинное обучение, Machine Learning, Agile, DevOps, MLOps

Недавно мы рассказывали про модель зрелости MLOps от Google. Сегодня рассмотрим альтернативную методику оценки зрелости операций разработки и эксплуатации машинного обучения, которая больше похоже на наиболее популярную в области управленческого консалтинга модель CMMI, часто используемую в проектах цифровизации. Читайте далее, по каким критериям измеряется Machine Learning Operations Maturity Model и как применить это на практике.   5 критериев для оценки MLOps-зрелости Предложенная компанией Google 3-х уровневая модель оценки зрелости MLOps не является единственной. Например, альтернатива от исследовательской ИТ-компанией GigaOm, в отличие от Google-варианта, учитывает не только технологии поддержки жизненного цикла машинного обучения, но и корпоративную культуру, которая неотделима от любой технической парадигмы. GigaOm выделяет 5 уровней MLOps-зрелости, оценивая состояние Machine Learning и окружающей инфраструктуры на предприятии по следующим критериям [1]: Далее …

Готовы ли вы к MLOps: что такое Machine Learning Operations Maturity Model

MlOps, цифровизация, цифровая трансформация, Big Data, Большие данные, Data Science, машинное обучение, Machine Learning, Agile, DevOps, CMMI

Цифровизация и запуск проектов Big Data предполагают некоторый уровень управленческой зрелости бизнеса, который обычно оценивается по модели CMMI. MLOps также требует предварительной готовности предприятия к базовым ценностям этой концепции. Читайте в нашей статье, что такое Machine Learning Operations Maturity Model – модель зрелости операций разработки и эксплуатации машинного обучения, из каких уровней она состоит и как оценить готовность к внедрению MLOps в вашей компании. 3 уровня MLOps-зрелости по версии Google Напомним, как и цифровая трансформация, MLOps – это не только технологии, но и корпоративная культура, а также устойчивое развитие производственных процессов.  При этом запуск машинного обучения в промышленную эксплуатацию (production) можно представить следующей последовательностью этапов, которые можно выполнить вручную или с помощью автоматического конвейера [1]: извлечение данных (Data extraction), когда Далее …

Зачем вам MLOps: новый подход к Machine Learning в production

MLOps, цифровизация, цифровая трансформация, Big Data, Большие данные, CRISP-DM, Data Science, машинное обучение, Machine Learning, Agile, DevOps

Пока цифровизация воплощает в жизнь концепцию DataOps, мир Big Data вводит новую парадигму – MLOps. Читайте в нашей статье, что такое MLOps, зачем это нужно бизнесу и какие специалисты потребуются при внедрении практик и инструментов сопровождения всех операций жизненного цикла моделей машинного обучения (Machine Learning Operations). Что такое MLOps, почему это стало актуально и при чем тут Big Data По аналогии с DevOps и DataOps, в связи с популяризацией методов Machine Learning и ростом их практических внедрений, у бизнеса появилась потребность в организации непрерывного сотрудничества и взаимодействия между всеми участниками процессов работы с моделями машинного обучения от бизнеса до инженеров и разработчиков Big Data, включая Data Scientist’ов и ML-специалистов. Понятие MLOps еще достаточно молодое, однако с каждым днем оно становится Далее …

Чем похожи CRISP-DM и BABOK®Guide: бизнес-анализ в Data Science

цифровизация, цифровая трансформация, Big Data, Большие данные, предиктивная аналитика, цифровая экономика, BABOK, CRISP-DM, бизнес-анализ, подготовка данных, Data Science, Data Mining

Мы уже рассказывали, что цифровизация и другие масштабные проекты внедрения технологий Big Data должны обязательно сопровождаться процедурами бизнес-анализа, начиная от выявления требований на старте до оценки эффективности уже эксплуатируемого решения. Сегодня рассмотрим, как задачи бизнес-анализа из руководства BABOK®Guide коррелируют с этапами методологии исследования данных CRISP-DM, которая считается стандартом де-факто в области Data Science. Еще раз про CRISP-DM: что это и из чего состоит CRISP-DM (Cross-Industry Standard Process for Data Mining) — это наиболее распространенная на практике методология выполнения Data Science проектов, которую принято называть межотраслевым стандартным процессом исследования данных. Он описывает жизненный цикл Data Science проектов в следующих 6 фазах, каждая из которых включает ряд задач: понимание бизнеса (Business Understanding), где через оценку текущей ситуации определяются бизнес-цели и требования, а также Далее …

Cloudera Data Science Workbench vs Arenadata Analytic Workspace: сравнительный обзор

предиктивная аналитика, архитектура, обработка данных, Big Data, большие данные, Hadoop, Arenadata, цифровизация, цифровая трансформация, Spark, DataOps, Docker, Kubernetes, Zeppelin

Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache Zeppelin. Что такое Cloudera Data Science Workbench и кто этим пользуется По аналогии с российским решением Arenadata Analytic Workspace на основе open-source продукта Apache Zeppelin, Cloudera Data Science Workbench поддерживает концепцию самообслуживаемого сервиса для непрерывного цикла аналитики Big Data в корпоративных масштабах. Он позволяет управлять собственными DataOps-конвейерами, ускоряя проекты машинного обучения от исследования до промышленной эксплуатации, включая поддержку R, Python и Scala для безопасного выполнения вычислений с данными в кластерах Далее …

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта — Arenadata Analytic Workspace

предиктивная аналитика, архитектура, обработка данных, Big Data, большие данные, Hadoop, Arenadata, цифровизация, цифровая трансформация, PySpark, Spark, DataOps

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при чем здесь цифровизация. Аналитика больших данных, DataOps и цифровизация: модные слова или необходимость Напомним, DataOps (от Data Operations) – это концепция непрерывной интеграции данных между процессами, командами и системами для повышения эффективности корпоративного управления за счет распределенного сбора, централизованной аналитики и гибкой политики доступа к информации с учетом ее конфиденциальности, ограничений на использование и соблюдения целостности. Данный термин впервые прозвучал в 2015 году в контексте демократизации Big Data. С тех пор Далее …

Цифровизация рабочего пространства: ТОП-3 тенденции 2020

цифровизация, цифровая трансформация, цифровая экономика, Agile, администрирование, интернет вещей, Internet of Things, IoT

Вчера мы говорили про наиболее перспективные технологии 2020 с точки зрения исследовательского агентства Gartner и их влияние на цифровую трансформацию. Сегодня продолжим разбирать современные тенденции изменения рабочего пространства с учетом эпидемиологической напряженности и тренда на дистанционное взаимодействие. Читайте далее, что такое Desktop as a Service, как выглядит интеллектуальное рабочее пространство, чем отличается BYOD от BYOT и каким образом все это полезно для корпоративной цифровизации. Цифровизация офиса: 6 трендов 2020 от Gartner Помимо всего прочего, 2020 год также можно назвать годом удаленной работы и трансформации рабочего пространства из-за пандемии COVID-19, карантинного режима и мер по предотвращению инфекции. В связи с этим компания Gartner провела перечень самых популярных технологий по организации офисных мест, причем не только удаленных [1]: облачная цифровизация рабочей ячейки, Далее …

От ДНК-чипов до цифровых двойников: 5 самых перспективных технологий 2020 от Gartner

цифровизация, цифровая трансформация, Big Data, Большие данные, цифровая экономика, Agile

Постоянно обновляя наши курсы «Аналитика больших данных для руководителей» в соответствии с развитием области Big Data и вызовов современного бизнеса, сегодня мы расскажем про наиболее перспективные технологии с точки зрения исследовательского агентства Gartner, а также рассмотрим их влияние на цифровую трансформацию. Читайте в нашей статье, почему цифровой двойник нужен не только производству, как цифровая трансформация преобразует корпоративную архитектуру, а также при чем тут созидательный искусственный интеллект (ИИ) и доверие алгоритмам. Хайп-цикл 2020: ТОП-5 новых технологий Карантинные меры из-за пандемии COVID-19 оказали беспрецедентное влияние на все области человеческой жизни, включая ИТ-сферу. При общем негативном влиянии на мировую экономику, коронавирус выступил драйвером развития технологий удаленного взаимодействия, масштабной обработки и аналитики больших данных, о чем мы писали здесь. Поэтому неудивительно, что эксперты Gartner Далее …