Готовы ли вы к MLOps: что такое Machine Learning Operations Maturity Model

MlOps, цифровизация, цифровая трансформация, Big Data, Большие данные, Data Science, машинное обучение, Machine Learning, Agile, DevOps, CMMI

Цифровизация и запуск проектов Big Data предполагают некоторый уровень управленческой зрелости бизнеса, который обычно оценивается по модели CMMI. MLOps также требует предварительной готовности предприятия к базовым ценностям этой концепции. Читайте в нашей статье, что такое Machine Learning Operations Maturity Model – модель зрелости операций разработки и эксплуатации машинного обучения, из каких уровней она состоит и как оценить готовность к внедрению MLOps в вашей компании. 3 уровня MLOps-зрелости по версии Google Напомним, как и цифровая трансформация, MLOps – это не только технологии, но и корпоративная культура, а также устойчивое развитие производственных процессов.  При этом запуск машинного обучения в промышленную эксплуатацию (production) можно представить следующей последовательностью этапов, которые можно выполнить вручную или с помощью автоматического конвейера [1]: извлечение данных (Data extraction), когда Далее …

Зачем вам MLOps: новый подход к Machine Learning в production

MLOps, цифровизация, цифровая трансформация, Big Data, Большие данные, CRISP-DM, Data Science, машинное обучение, Machine Learning, Agile, DevOps

Пока цифровизация воплощает в жизнь концепцию DataOps, мир Big Data вводит новую парадигму – MLOps. Читайте в нашей статье, что такое MLOps, зачем это нужно бизнесу и какие специалисты потребуются при внедрении практик и инструментов сопровождения всех операций жизненного цикла моделей машинного обучения (Machine Learning Operations). Что такое MLOps, почему это стало актуально и при чем тут Big Data По аналогии с DevOps и DataOps, в связи с популяризацией методов Machine Learning и ростом их практических внедрений, у бизнеса появилась потребность в организации непрерывного сотрудничества и взаимодействия между всеми участниками процессов работы с моделями машинного обучения от бизнеса до инженеров и разработчиков Big Data, включая Data Scientist’ов и ML-специалистов. Понятие MLOps еще достаточно молодое, однако с каждым днем оно становится Далее …

Чем похожи CRISP-DM и BABOK®Guide: бизнес-анализ в Data Science

цифровизация, цифровая трансформация, Big Data, Большие данные, предиктивная аналитика, цифровая экономика, BABOK, CRISP-DM, бизнес-анализ, подготовка данных, Data Science, Data Mining

Мы уже рассказывали, что цифровизация и другие масштабные проекты внедрения технологий Big Data должны обязательно сопровождаться процедурами бизнес-анализа, начиная от выявления требований на старте до оценки эффективности уже эксплуатируемого решения. Сегодня рассмотрим, как задачи бизнес-анализа из руководства BABOK®Guide коррелируют с этапами методологии исследования данных CRISP-DM, которая считается стандартом де-факто в области Data Science. Еще раз про CRISP-DM: что это и из чего состоит CRISP-DM (Cross-Industry Standard Process for Data Mining) — это наиболее распространенная на практике методология выполнения Data Science проектов, которую принято называть межотраслевым стандартным процессом исследования данных. Он описывает жизненный цикл Data Science проектов в следующих 6 фазах, каждая из которых включает ряд задач: понимание бизнеса (Business Understanding), где через оценку текущей ситуации определяются бизнес-цели и требования, а также Далее …

Cloudera Data Science Workbench vs Arenadata Analytic Workspace: сравнительный обзор

предиктивная аналитика, архитектура, обработка данных, Big Data, большие данные, Hadoop, Arenadata, цифровизация, цифровая трансформация, Spark, DataOps, Docker, Kubernetes, Zeppelin

Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache Zeppelin. Что такое Cloudera Data Science Workbench и кто этим пользуется По аналогии с российским решением Arenadata Analytic Workspace на основе open-source продукта Apache Zeppelin, Cloudera Data Science Workbench поддерживает концепцию самообслуживаемого сервиса для непрерывного цикла аналитики Big Data в корпоративных масштабах. Он позволяет управлять собственными DataOps-конвейерами, ускоряя проекты машинного обучения от исследования до промышленной эксплуатации, включая поддержку R, Python и Scala для безопасного выполнения вычислений с данными в кластерах Далее …

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта — Arenadata Analytic Workspace

предиктивная аналитика, архитектура, обработка данных, Big Data, большие данные, Hadoop, Arenadata, цифровизация, цифровая трансформация, PySpark, Spark, DataOps

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при чем здесь цифровизация. Аналитика больших данных, DataOps и цифровизация: модные слова или необходимость Напомним, DataOps (от Data Operations) – это концепция непрерывной интеграции данных между процессами, командами и системами для повышения эффективности корпоративного управления за счет распределенного сбора, централизованной аналитики и гибкой политики доступа к информации с учетом ее конфиденциальности, ограничений на использование и соблюдения целостности. Данный термин впервые прозвучал в 2015 году в контексте демократизации Big Data. С тех пор Далее …

Как подключить PySpark и Kaggle в Google Colab

Недавно мы рассказывали, что такое PySpark. Сегодня рассмотрим, как подключить PySpark в Google Colab, а также как скачать датасет из Kaggle прямо в Google Colab, без непосредственной загрузки программ и датасетов на локальный компьютер. Google Colab Google Colab — выполняемый документ, который позволяет писать, запускать и делиться своим Python-кодом через Google Drive. Это тот же самый Jupyter Notebook, только блокноты хранятся в Google Drive, а выполняются на сервере. В отличие от традиционных инструментов разработки, Jupyter Notebook состоит из ячеек, где можно писать код (чаще всего на Python), запускать и сразу же смотреть результаты. Кроме того, ячейки блокнотов могут содержать не только код, но и текст, формулы, рисунки и видео. Особенную популярность блокноты получили у Data Scientist’ов, поскольку позволяют мгновенно тестировать Далее …

Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

Livy, Python, Spark, архитектура, обработка данных, Big Data, большие данные, безопасность, security, Hadoop, PySpark, Arenadata, Apache Zeppelin, Jupyter Notebook

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache Zeppelin – это интерактивный веб-блокнот (или «ноутбук» от notebook) с открытым исходным кодом, который поддерживает практически все этапы работы с данными в Data Science, от извлечения до визуализации, в т.ч. интерактивный анализ и совместное использование документов. Он интегрирован с Apache Spark, Flink, Hadoop, множеством реляционных и NoSQL-СУБД (Cassandra, HBase, Hive, PostgreSQL, Elasticsearch, Google Big Query, Mysql, MariaDB, Redshift), а также поддерживает различные языки программирования, популярные в области Big Data: Python, Далее …

Как управлять собственным Data Flow на Apache Spark с NiFi через Livy: разбираемся с процессорами и контроллерами

Livy, Spark, архитектура, обработка данных, Big Data, большие данные, Hadoop, NiFi, PySpark, Python, ETL

Apache Livy полезен не только при организации конвейеров обработки больших данных (Big Data pipelines) на Spark и Airflow, о чем мы рассказывали здесь. Сегодня рассмотрим, как организовать запланированный запуск пакетных Spark-заданий из Apache NiFi через REST-API Livy, с какими проблемами можно при этом столкнуться и что поможет их решить. Что внутри Apache NiFi или как связаны потоковые файлы, процессоры и контроллеры Напомним, Apache NiFi – это популярный инструмент стека Big Data для маршрутизации потоков данных (Data Flow) и организации ETL-процессов. Его дополнительным преимуществом является наличие наглядного веб-GUI, в котором конечные пользователи могут добавлять новых пунктов назначения и источники данных с возможностью воспроизведения в любое время. Основными понятиями NiFi являются следующие [1]: файл потока данных (FlowFile) – единый фрагмент информации из заголовка и Далее …

Apache Livy vs Oozie: сравнительный обзор инструментов удаленного запуска Spark-задач

Livy, Spark, архитектура, обработка данных, Big Data, большие данные, Hadoop, Apache Oozie

Продолжая разговор про Apache Livy, сегодня мы сравним этот REST API для Spark c другой популярной Big Data системой планирования рабочих процессов для управления заданиями Hadoop – Oozie. Читайте в нашей статье, что такое Apache Oozie, чем он похож на Livy и в чем между ними разница, а также когда и почему стоит выбрать тот или иной инструмент. Что такое Apache Oozie и как это работает Apache Oozie – это серверная система планирования выполнения рабочих процессов и повторяющихся задач в экосистеме Hadoop. Как и в Apache Livy, рабочие процессы в Oozie представлены в виде DAG-цепочки (Directed Acyclic Graph, ориентированный ациклический граф). Ози поддерживает запуск задач Hadoop MapReduce, Apache Hive, Pig, Sqoop, Spark, операций HDFS, UNIX Shell, SSH и электронной почты, Далее …

Что под капотом Apache Livy: принципы и особенности работы со Spark

AirFlow, Livy, Python, Spark, архитектура, обработка данных, Big Data, большие данные, безопасность, security

Вчера мы рассказывали про особенности совместного использования Apache Spark с Airflow и достоинства подключения Apache Livy к этой комбинации популярных Big Data фреймворков. Сегодня рассмотрим подробнее, как работает Apache Livy, а также за счет чего этот гибкий API обеспечивает удобство работы с Python-кодом и общие Spark Context’ы для разных операторов Airflow и не только. Когда вам нужен с Apache Livy: 5 популярных кейсов Прежде всего, отметим типовые сценарии, когда целесообразно использовать Apache Livy при работе со Спарк [1]: необходима единая сессия Spark (session) для нескольких клиентов, которые достаточно компактны и не перегружены сложными настройками; нужно быстро настроить доступ к кластеру Spark; требуется интегрировать Spark в мобильное приложение; необходимо поддерживать работу нестабильного кластера, не изменяя каждый раз его конфигурацию; нужно организовать Далее …