Особенности JOIN-операций в Apache Kafka Streams на примере Twitter

Big Data, Большие данные, обработка данных, Kafka, архитектура, Machine Learning, машинное обучение, KSQL

Продолжая разговор про практическое применение Apache Kafka на примере организации рекомендательной системы Twitter, сегодня мы рассмотрим, как с помощью Kafka Streams был разработан конвейер сбора и агрегации данных для машинного обучения (Machine Learning). Читайте в нашей статье про особенности объединения больших данных через LeftJoin и InnerJoin в Apache Kafka Streams. Архитектура приложения Kafka Streams в Twitter При относительной простоте высокоуровневой архитектуры конвейера Machine Learning в рамках рекомендательной системы Twitter на базе Apache Kafka, о чем мы рассказывали вчера, ее создание не обошлось без трудностей. В частности, специалистам Big Data в компании пришлось модифицировать типовую join-функцию в Kafka Streams. Кроме того, большой объем трафика, также оказывал отрицательное влияние на join-функции по умолчанию, дополнительно нагружая сам кластер Kafka. При этом логика обработки конвейера логов Далее …

KSQL — для тех кто любит Kafka и не знает Java

KSQL — это движок SQL с открытым исходным кодом для Apache Kafka. Он обеспечивает простой, но мощный интерактивный SQL интерфейс для потоковой обработки на Kafka, без необходимости писать код на языке программирования, таком как Java или Python.  SELECT * FROM payments-kafka-stream WHERE fraud_probability > 0.8                                                                    KSQL поддерживает широкий спектр потоковых операций, включая фильтрацию данных, преобразования, агрегации, соединения, оконные операции и сессии. Он является масштабируемым, отказоустойчивым и позволяет в режиме реального времени удовлетворить потребности бизнеса в данных.  Теперь вы можете задаться вопросом, для чего я могу использовать KSQL? Вот несколько Далее …