Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

Livy, Python, Spark, архитектура, обработка данных, Big Data, большие данные, безопасность, security, Hadoop, PySpark, Arenadata, Apache Zeppelin, Jupyter Notebook

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache Zeppelin – это интерактивный веб-блокнот (или «ноутбук» от notebook) с открытым исходным кодом, который поддерживает практически все этапы работы с данными в Data Science, от извлечения до визуализации, в т.ч. интерактивный анализ и совместное использование документов. Он интегрирован с Apache Spark, Flink, Hadoop, множеством реляционных и NoSQL-СУБД (Cassandra, HBase, Hive, PostgreSQL, Elasticsearch, Google Big Query, Mysql, MariaDB, Redshift), а также поддерживает различные языки программирования, популярные в области Big Data: Python, Далее …

Как управлять собственным Data Flow на Apache Spark с NiFi через Livy: разбираемся с процессорами и контроллерами

Livy, Spark, архитектура, обработка данных, Big Data, большие данные, Hadoop, NiFi, PySpark, Python, ETL

Apache Livy полезен не только при организации конвейеров обработки больших данных (Big Data pipelines) на Spark и Airflow, о чем мы рассказывали здесь. Сегодня рассмотрим, как организовать запланированный запуск пакетных Spark-заданий из Apache NiFi через REST-API Livy, с какими проблемами можно при этом столкнуться и что поможет их решить. Что внутри Apache NiFi или как связаны потоковые файлы, процессоры и контроллеры Напомним, Apache NiFi – это популярный инструмент стека Big Data для маршрутизации потоков данных (Data Flow) и организации ETL-процессов. Его дополнительным преимуществом является наличие наглядного веб-GUI, в котором конечные пользователи могут добавлять новых пунктов назначения и источники данных с возможностью воспроизведения в любое время. Основными понятиями NiFi являются следующие [1]: файл потока данных (FlowFile) – единый фрагмент информации из заголовка и Далее …

Apache Livy vs Oozie: сравнительный обзор инструментов удаленного запуска Spark-задач

Livy, Spark, архитектура, обработка данных, Big Data, большие данные, Hadoop, Apache Oozie

Продолжая разговор про Apache Livy, сегодня мы сравним этот REST API для Spark c другой популярной Big Data системой планирования рабочих процессов для управления заданиями Hadoop – Oozie. Читайте в нашей статье, что такое Apache Oozie, чем он похож на Livy и в чем между ними разница, а также когда и почему стоит выбрать тот или иной инструмент. Что такое Apache Oozie и как это работает Apache Oozie – это серверная система планирования выполнения рабочих процессов и повторяющихся задач в экосистеме Hadoop. Как и в Apache Livy, рабочие процессы в Oozie представлены в виде DAG-цепочки (Directed Acyclic Graph, ориентированный ациклический граф). Ози поддерживает запуск задач Hadoop MapReduce, Apache Hive, Pig, Sqoop, Spark, операций HDFS, UNIX Shell, SSH и электронной почты, Далее …

Что под капотом Apache Livy: принципы и особенности работы со Spark

AirFlow, Livy, Python, Spark, архитектура, обработка данных, Big Data, большие данные, безопасность, security

Вчера мы рассказывали про особенности совместного использования Apache Spark с Airflow и достоинства подключения Apache Livy к этой комбинации популярных Big Data фреймворков. Сегодня рассмотрим подробнее, как работает Apache Livy, а также за счет чего этот гибкий API обеспечивает удобство работы с Python-кодом и общие Spark Context’ы для разных операторов Airflow и не только. Когда вам нужен с Apache Livy: 5 популярных кейсов Прежде всего, отметим типовые сценарии, когда целесообразно использовать Apache Livy при работе со Спарк [1]: необходима единая сессия Spark (session) для нескольких клиентов, которые достаточно компактны и не перегружены сложными настройками; нужно быстро настроить доступ к кластеру Spark; требуется интегрировать Spark в мобильное приложение; необходимо поддерживать работу нестабильного кластера, не изменяя каждый раз его конфигурацию; нужно организовать Далее …

Зачем вам Apache Livy или как скрестить Spark с Airflow для эффективных Big Data pipeline’ов

Spark, Airflow, обработка данных, архитектура, Livy, большие данные, Big Data

Сегодня поговорим про построение конвейеров обработки данных (data pipeline) на примере совместного использования Apache Spark с Airflow и рассмотрим типовые проблемы этой комбинации. Читайте в нашей статье, как автоматизировать задачи пакетной и потоковой обработки больших данных (Big Data) с помощью гибкого REST-API Apache Livy, включая работу с Python-кодом, отказоустойчивость и безопасность. Что не так с комбо Apache Spark и Airflow: смотрим на примере data pipeline Представим достаточно простой data pipeline, когда необходимо обеспечить запуск Spark-задач по расписанию в рамках следующего ETL-процесса [1]: непрерывный поток приходит с видеокамер, датчиков и других IoT-устройств, данные пишутся в топики Apache Kafka; одно приложение Apache Spark обеспечивает извлечение данных (Extract) в эффективном для хранения и чтения Big Data столбцовом формате, например, Parquet, чтобы далее отправить Далее …