Проблемы анализа данных временных рядов и способы их решения: какие статистические методы и алгоритмы глубокого обучения лучше подходят для прогнозирования. Особенности прогнозирования временных рядов Напомним,...
Создаем свой оператор Apache AirFlow с ChatGPT
Недавно мы разбирали, как дата-инженеру написать собственный оператор Apache AirFlow и использовать его в DAG. Сегодня посмотрим, каким образом с этой задачей справляется модный ИИ...
Продуктовое мышление в MLOps и метрики оценки ML-модели
Сегодня посмотрим на MLOps с точки зрения организационного и технического управления, решив вопрос о подходе к разработке ML-системы, а также рассмотрим метрики ее оценки перед...
MLOps c Kafka Streams и gRPC: 3 способа развернуть ML-модель в production
Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер...
MLOps c Python-библиотекой Evidently: обнаружение дрейфа данных в ML-моделях
Зачем нужна Python-библиотека Evidently, и как она помогает специалистам по Data Science выявлять дрейф данных моделей Machine Learning в производственной среде. Знакомимся с еще одним...
Преимущества Apache HBase для метода ближайших соседей
Метод ближайших соседей активно используется в машинном обучении для решения задач классификации в различных бизнес-приложениях. Познакомимся поближе с этим алгоритмом Machine Learning, а также разберем,...
MLOps для Spark-приложений в AWS с Amazon SageMaker: кейс Udemy
Как MLOps-инженеры платформы онлайн-курсов Udemy ускорили цикл разработки и внедрения проектов машинного обучения, используя возможности Amazon SageMaker для создания и отладки Spark-приложений в удаленном облачном...
FastAPI versus BentoML: что лучше для MLOps и почему
Что общего у FastAPI с BentoML, чем они отличаются и почему только один из них является полноценным MLOps-инструментом. Смотрим на примере операций разработки и развертывания...
Ускоряем Apache Spark с помощью RAPIDS на GPU
Как использовать преимущества графических процессоров для Spark-приложений аналитики больших данных и машинного обучения с помощью библиотек RAPIDS. Знакомимся с ускорителем Spark RAPIDS и его возможностями...
MLOps с Graphene: зачем и как использовать GraphQL для проектов Machine Learning
Недавно мы упоминали GraphQL как мощный и гибкий язык запросов к данным, хранящимся в графовых СУБД. Сегодня рассмотрим, чем эта технология может быть полезна в...