Заменит ли Apache Kafka в прочие СУБД в мире Big Data: за и против

Big Data, Большие данные, обработка данных, Kafka, архитектура, администрирование, SQL, NoSQL, Data Lake, Delta Lake, Elasticsearch, ClickHouse, DWH, обучение Apache Kafka, курсы по Apache Kafka

В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен. Что общего у Apache Kafka с базой данных и чем они отличаются В современном ИТ-мире есть множество видов баз данных, которые в большинстве случаев принято разделять на следующие категории [1]: простейшие – файлы, иерархические и сетевые; реляционные (MySQL, MariaDB, PostgreSQL, ClickHouse); нереляционные или NoSQL (Elasticsearch, Cassandra, Apache HBase, MongoDB, Redis, Prometheus, InfluxDB, TimescaleDB, Tarantool); комбинированные NewSQL (MemSQL, VoltDB, Spanner, Calvin, CockroachDB, FaunaDB, yugabyteDB) и многомодельные (ArangoDB, OrientDB, Couchbase). Независимо от Далее …

Что не так с Delta Lake на Apache Spark: 7 основных проблем и их решения

Spark, архитектура, обработка данных, большие данные, Big Data, Hadoop, Data Lake, Hive, SQL, NoSQL, MLOps, DataOps, Delta Lake, обучение Apache Spark, курсы по Spark

При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее, как реализовать потоковое чтение и запись данных при отсутствии Sqoop, что делать для изменения типа столбца и при чем тут Hive. Не все так просто или ключевые особенности Delta Lake Подчеркнем, что облачное Delta Lake располагается поверх корпоративной системы хранения данных, но не заменяет ее, а добавляет возможность работать с ACID-транзакциями в Hadoop HDFS, BLOB-объекты Azure и Amazon S3. Загрузка информации в Delta Lake возможна из любой системы хранения, которая Далее …

Введение в PySpark

Python считается из основных языков программирования в областях Data Science и Big Data, поэтому не удивительно, что Apache Spark предлагает интерфейс и для него. Data Scientist’ы, которые знают Python, могут запросто производить параллельные вычисления с PySpark. Читайте в нашей статье об инициализации Spark-приложения в Python, различии между Pandas и PySpark, доступных форматов для чтения и записи, а также интеграция с базами данных. Инициализация через SparkContext, SparkConf и SparkSession В первую очередь, Spark создает SparkContext — объект, который определяет, как получить доступ к кластеру в момент выполнения программы. Также определяются параметры конфигурации через SparkConf. К ним может относиться кластерный менеджер (master), с которым соединяется приложение через URL, название приложения, количество ядер и т.д (с полным списком можно ознакомиться в документации). Вот так может выглядеть инициализация Spark: Далее …

Практический пример монетизации Big Data с помощью Elasticsearch и Kibana

цифровизация, цифровая трансформация, Big Data, Большие данные, предиктивная аналитика, цифровая экономика, Elasticsearch, NoSQL, ритейл

Недавно мы рассказывали, что аналитика больших данных с помощью технологий Big Data – это необязательно удел только крупных корпораций. В этой статье мы рассмотрим реальный бизнес-кейс, как извлечь выгоду из накопленных данных о своих пользователях, применяя для этого возможности NoSQL-СУБД Elasticsearch для полнотекстового поиска по полуструктурированным данным и веб-интерфейс визуализации результатов Kibana. Постановка задачи с точки зрения бизнеса Рассмотрим кейс небольшого интернет-магазина зоотоваров, где есть партия кормов для кошек и собак, у которой через несколько месяцев истекает срок годности. Чтобы оперативно реализовать его в пределах этого срока, компания решила объявить распродажу, сообщив об этом своим покупателям, общая база которых насчитывает около миллиона клиентов. Однако, корма для кошек и собак будут интересны только владельцам этих животных, а не, например, хозяевам рептилий Далее …

Как найти товарные остатки с помощью Big Data и Machine Learning: пример Леруа Мерлен

Big Data, Большие данные, обработка данных, архитектура, цифровизация, цифровая трансформация, Kafka, ритейл, Greenplum, Tarantol, SQL, NoSQL, AirFlow, NiFi, ETL, Data Lake, Machine Learning, машинное обучение

Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache Kafka, NiFi, AirFlow, Greenplum, MongoDB, Tarantool, Kubernetes и прочих технологий Big Data. Где товар или постановка задачи от бизнеса: проблемы, возможности и ограничения Проблема оперативной инвентаризации товаров, доступных для продажи прямо сейчас, актуальна для любого торгового предприятия. В Леруа Мерлен она усугублялась тем, что помимо сети крупных супермаркетов, в компании также есть склады и так называемые дарксторы. Заказы из интернет-магазинов могут собираться из всех трех торговых баз (супермаркет, склад, даркстор). Далее …

3 достоинства и 5 особенностей интеграции Apache Kudu и Spark с примерами

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala, SQL, NoSQL, Kudu, Spark, HDFS

Недавно мы разбирали особенности интеграции Apache Kudu и Spark. В продолжение этой темы, сегодня поговорим про некоторые особенности выполнения SQL-операций с данными при интеграции этих Big Data фреймворков, а также рассмотрим пример записи данных в мульти-мастерный кластер Куду через Impala с помощью API Data Frame на PySpark. Что приносит Kudu в Spark: 3 преимущества совместного использования Напомним, Apache Kudu – это механизм хранения больших данных с открытым исходным кодом для экосистемы Hadoop, который обеспечивает высокоскоростную аналитику Big Data практически в режиме онлайн, соблюдая баланс между высокой пропускной способностью для объемных сканирований и низкой задержкой для произвольного доступа. Совмещая Spark и Kudu, можно создавать приложения, которые с помощью SQL запрашивают и анализируют постоянно изменяющиеся наборы данных. При этом производительность системы остается Далее …

Как организовать конвейер self-service Machine Learning на Apache Kafka, Spark Streaming, Kudu и Impala: пример расширенной BI-аналитики Big Data

Big Data, Большие данные, обработка данных, архитектура, HBase, Impala, SQL, NoSQL, Kudu, Spark, Kafka, банки, security, машинное обучение, Machine Learning

Продолжая разбирать production-кейсы реального использования этих технологий Big Data, сегодня поговорим подробнее, каковы плюсы совместного применения Kudu, Spark Streaming, Kafka и Cloudera Impala на примере аналитической платформы для мониторинга событий информационной безопасности банка «Открытие». Также читайте в нашей статье про возможности этих технологий в контексте машинного обучения (Machine Learning), в т.ч. самообслуживаемого (self-service ML). BI-система на базе Big Data для банковской безопасности Apache Kudu, Spark, Kafka и прочие технологии Big Data активно используются не только в типовых BI-приложениях, но и в аналитических системах обеспечения информационной безопасности. В частности, в январе 2020 года банк «Открытие» совместно с компанией «Неофлекс» завершил проект по внедрению аналитической платформы мониторинга событий информационной безопасности на базе технологий Big Data. Система обеспечивает непрерывный мониторинг и позволяет в Далее …

Как сократить цикл BI-аналитики Big Data в тысячи раз или ETL-конвейер Apache Kafka-Storm-Kudu-Impala в Xiaomi

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala, SQL, NoSQL, Kudu, Spark, Kafka, Storm

Сегодня мы рассмотрим практический кейс использования Apache Kudu с Kafka, Storm и Cloudera Impala в крупной китайской корпорации, которая производит смартфоны. На базе этих Big Data технологий компания Xiaomi построила собственную платформу для BI-аналитики больших данных и генерации отчетности в реальном времени. История Kudu-проекта в Xiaomi Корпорация Xiaomi начала использовать Kudu еще в 2016 году, вместе с Cloudera Impala, которая на тот момент еще находилась в стадии инкубации open-source проектов фонда Apache Software Foundation [1]. До применения Kudu архитектура аналитической Big Data системы выглядела следующим образом [2]: данные из различных источников (более 20 миллиардов записей в день) сохранялись в HBase и в отдельной базе файлов последовательности в формате Sequence; далее эти данные обрабатывались с помощью Apache Hive, классического Hadoop MapReduce Далее …

BI-аналитика больших данных и другие Big Data системы: 5 примеров применения Apache Kudu

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala, SQL, NoSQL, Kudu

Вчера мы говорили про интеграцию Apache Kudu со Spark SQL, Kafka и Cloudera Impala для эффективной организации озера данных (Data Lake), обеспечивающего быструю аналитику больших данных в режиме реального времени. В продолжение этой темы, сегодня рассмотрим 5 примеров практического использования kudu в Big Data проектах, уделив особое внимание системам бизнес-аналитики или BI (Business Intelligence). ТОП-5 примеров использования Apache Kudu в Big Data проектах Напомним, Kudu дает возможность потокового ввода практически в режиме реального времени, позволяя запускать приложения временных рядов с различными схемами доступа и разрабатывать модели предопределенного обучения. Также этот Hadoop-движок предоставляет свободу доступа и запроса данных из любых существующих источников или форматов с помощью Impala, о чем мы писали здесь. В этой статье мы перечисляли основные области применения Kudu. Далее …

Быстрая аналитика больших данных в Data Lake на Apache Kudu с Kafka и Spark

Big Data, Большие данные, обработка данных, архитектура, Hadoop, HBase, Impala, Data Lake, SQL, NoSQL, Hive, Kafka, Spark, Kudu

В продолжение темы про совместное использование Apache Kudu с другими технологиями Big Data, сегодня рассмотрим, как эта NoSQL-СУБД работает вместе с Kafka, Spark и Cloudera Impala для построения озера данных (Data Lake) для быстрой аналитики больших данных в режиме реального времени. Также читайте в нашей статье про особенности интеграции Apache Kudu со Spark SQL. Зачем совмещать Apache Kudu с Kafka и Spark или быстрая альтернатива традиционному Data Lake на Hadoop Рассмотрим пример типичной Big Data для потокового анализа данных на базе Data Lake, куда информация непрерывно передается из кластера Kafka. Там новые данные обогащаются историческими, чтобы конечные пользователи (BI-приложения, Data Scientist’ы и аналитики Big Data) использовали их для своих бизнес-нужд анализ. При этом производительность системы является ключевым фактором, который обеспечивает Далее …