Как нормализовать данные в PySpark перед обучением ML-моделей

В прошлый раз мы говорили о методах NLP в PySpark. Сегодня рассмотрим методы нормализации и стандартизации данных модуля ML библиотеки PySpark. Читайте в нашей статье: применение Normalizer, StandardScaler, MinMaxScaler и MaxAbsScaler для нормализация и стандартизации данных. Нормализация и стандартизация — методы шкалирования данных Нормализация (normalization) и стандартизация (standardization) являются методами изменения диапазонов значений — шкалирования. Шкалирование особенно полезно в машинном обучении (Machine Learning), поскольку разные атрибуты могут измеряться в разных диапазонах, или значения одного атрибута варьируются слишком сильно. Например, один атрибут имеет диапазон от 0 до 1, а второй — от 1 до 1000. Для задачи регрессии второй атрибут оказывал бы большое влияние на обучение, хотя не факт, что он является более важным, чем первый. Нормализация и стандартизация отличаются своими Далее …

От HDFS в облака: разбираем Google Cloud Storage Connector for Hadoop

курсы по Hadoop, обучение Hadoop, Hadoop, HDFS, Spark, обработка данных, большие данные, Big Data, облака, PySpark, Google Cloud Storage Connector for Hadoop

Говоря про перспективы развития экосистемы Apache Hadoop с учетом современного тренда на SaaS-подход к работе с большими данными (Big Data), сегодня мы рассмотрим, как работает коннектор облачного хранилища Google для этого фреймворка. Читайте далее, чем HCFS отличается от HDFS и каковы преимущества практического использования Google Cloud Storage Connector for Hadoop. Что такое Google Cloud Storage и зачем ему коннектор к Apache Hadoop Напомним, Google Cloud Storage — это единое хранилище объектов, которое предоставляет доступ к данным через унифицированный API, являясь облачным управляемым решением. Оно поддерживает как высокопроизводительные вычисления, так и архивный вариант использования [1]. Существует несколько способов получить доступ к данным, хранящимся в Google Cloud Storage [2]: через приложения Spark, PySpark или Hadoop с использованием префикса gs: //; в рамках Далее …

Natural Language Processing (NLP) в PySpark: токенизация, стоп-слова, N-граммы

Обработка естественного языка (Natural Language Processing, NLP) является перспективным направлением Data Science и Big Data. Сегодня мы расскажем вам о применении методов NLP в PySpark. В этой статье вы узнаете об обычной токенизации и на основе регулярных выражений, стоп-словах русского и английского языков, а также о N-граммах в PySpark. Токенизация в PySpark Токенизация — это процесс разбиения текста на текстовые единицы (чаще всего слова). В PySpark за это отвечают Tokenizer и RegexTokenizer. Создадим DataFrame, который состоит из простых предложений, а также определим функцию (udf), которая будет считать количество слов в списке. from pyspark.ml.feature import Tokenizer, RegexTokenizer from pyspark.sql.functions import col, udf from pyspark.sql.types import IntegerType sentenceDataFrame = spark.createDataFrame([ (0, «Привет я слышал о NLP PySpark»), (1, «Как же хочется попасть Далее …

Apache Spark 3.0: что нового?

Spark, обработка данных, большие данные, Big Data, SQL, Python, R, PySpark

Чтобы сделать наши курсы по Spark еще более интересными и добавить в них самые актуальные тренды, сегодня мы расскажем о новом релизе этого Big Data фреймворка. Читайте далее, что нового в Apache Spark 3.0 и почему Spark SQL стал еще лучше. 10 лет в Big Data или немного истории В июне 2020 года вышел новая версия Apache Spark – 3.0. Примечательно, что в этом году проект празднует первый серьезный юбилей – 10 лет. Напомним, Apache Spark, как и многие Big Data проекты, начал свой путь из академической среды – исследовательской лаборатории AMPlab Калифорнийского университета Беркли, которая специализировалась на вычислениях с интенсивным использованием данных. Команда ученых AMPlab создала новый движок для решения проблем с обработкой больших объемов данных, одновременно предоставив API Далее …

Линейная регрессия, регуляризация, кросс-валидация и Grid Search в PySpark

В прошлый раз мы говорили о решении задачи классификации в рамках Machine Learning с помощью PySpark MLlib. Сегодня рассмотрим задачу регрессии. Читайте далее: что такое линейная регрессия, L1 и L2 регуляризация, алгоритм подбора значений гиперпараметров Grid Search, а также применение кросс-валидации в PySpark. Датасет с домами на продажу Обучать модель машинного обучения (Machine Learning) будем на датасете с домами на продажу в округе Кинг (Вашингтон, США). Его можно скачать напрямую с Kaggle или воспользоваться Kaggle API, как мы описывали здесь. Датасет содержит такие атрибуты, как цена, количество комнат, количество ванных комнат, дату постройки, площадь на квадратный фут (1 фут = 0.3 метра) и другие. Код на Python для инициализации Spark-приложения и создания DataFrame выглядит следующим образом: from pyspark.sql import SparkSession Далее …

Как решить задачу классификации в PySpark

PySpark позволяет работать не только с большими данными (Big data), но и создавать модели машинного обучения (Machine Learning). Сегодня мы расскажем вам о модуле ML и покажем, как обучить модель Machine Learning для решения задачи классификации. Читайте у нас: подготовка данных, применение логистической регрессии, а также использование метрик качеств в PySpark. Датасет с домами на продажу В качестве примера мы будем использовать датасет Kaggle, который содержит данные о домах на продажу в Бруклине с 2003 по 2017 года и доступен для скачивания. Он содержит 111 атрибутов (столбцов) и 390883 записей (строк). В атрибуты включены: дата продажи, дата постройки, цена на дом, налоговый класс, соседние регионы, долгота, ширина и др. # Если у вас Google Colab, то раскомментируйте # import findspark Далее …

Что такое PySpark SQL и как он работает: несколько примеров

В прошлый раз мы говорили о том, как установить PySpark в Google Colab, а также скачали датасет с помощью Kaggle API. Сегодня на примере этого датасета покажем, как применять операции SQL в PySpark в рамках анализа Big Data. Читайте далее про вывод статистической информации, фильтрацию, группировку и агрегирование больших данных в PySparkSQL. Датасет с домами на продажу Датасет Kaggle содержит данные о домах на продажу в Бруклине с 2003 по 2017 года и доступен для скачивания. Он содержит 111 атрибутов (столбцов) и 390883 записей (строк). В атрибуты включены: дата продажи, дата постройки, цена на дом, налоговый класс, соседние регионы, долгота, ширина и др. Итак, если у вас установлен PySpark, вам нужно только скачать датасет и прочитать его. Ниже представлен код Далее …

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта — Arenadata Analytic Workspace

предиктивная аналитика, архитектура, обработка данных, Big Data, большие данные, Hadoop, Arenadata, цифровизация, цифровая трансформация, PySpark, Spark, DataOps

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при чем здесь цифровизация. Аналитика больших данных, DataOps и цифровизация: модные слова или необходимость Напомним, DataOps (от Data Operations) – это концепция непрерывной интеграции данных между процессами, командами и системами для повышения эффективности корпоративного управления за счет распределенного сбора, централизованной аналитики и гибкой политики доступа к информации с учетом ее конфиденциальности, ограничений на использование и соблюдения целостности. Данный термин впервые прозвучал в 2015 году в контексте демократизации Big Data. С тех пор Далее …

Как подключить PySpark и Kaggle в Google Colab

Недавно мы рассказывали, что такое PySpark. Сегодня рассмотрим, как подключить PySpark в Google Colab, а также как скачать датасет из Kaggle прямо в Google Colab, без непосредственной загрузки программ и датасетов на локальный компьютер. Google Colab Google Colab — выполняемый документ, который позволяет писать, запускать и делиться своим Python-кодом через Google Drive. Это тот же самый Jupyter Notebook, только блокноты хранятся в Google Drive, а выполняются на сервере. В отличие от традиционных инструментов разработки, Jupyter Notebook состоит из ячеек, где можно писать код (чаще всего на Python), запускать и сразу же смотреть результаты. Кроме того, ячейки блокнотов могут содержать не только код, но и текст, формулы, рисунки и видео. Особенную популярность блокноты получили у Data Scientist’ов, поскольку позволяют мгновенно тестировать Далее …

Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

Livy, Python, Spark, архитектура, обработка данных, Big Data, большие данные, безопасность, security, Hadoop, PySpark, Arenadata, Apache Zeppelin, Jupyter Notebook

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache Zeppelin – это интерактивный веб-блокнот (или «ноутбук» от notebook) с открытым исходным кодом, который поддерживает практически все этапы работы с данными в Data Science, от извлечения до визуализации, в т.ч. интерактивный анализ и совместное использование документов. Он интегрирован с Apache Spark, Flink, Hadoop, множеством реляционных и NoSQL-СУБД (Cassandra, HBase, Hive, PostgreSQL, Elasticsearch, Google Big Query, Mysql, MariaDB, Redshift), а также поддерживает различные языки программирования, популярные в области Big Data: Python, Далее …