Что не так с UDF-функциями в Apache Spark SQL и как это исправить

Автор Категория ,
Что не так с UDF-функциями в Apache Spark SQL и как это исправить

Продвигая наши курсы по Apache Spark для разработчиков, сегодня рассмотрим пользовательские функции и особенности работы с ними в API SQL-модуле этого фреймворка. Читайте далее про идемпотентность UDF-функций и их влияние…

Особенности оконных функций и кэширования датафреймов в Apache Spark SQL

Автор Категория ,
Особенности оконных функций и кэширования датафреймов в Apache Spark SQL

В рамках обучения разработчиков Apache Spark, сегодня рассмотрим еще несколько интересных особенностей этого фреймворка, ограничивающих его типовые возможности и на PySpark-примерах разберем, как с этим бороться. Читайте далее, что такое…

Еще 3 причуды API DataFrame в Apache Spark, о которых вы не знали

Автор Категория ,
Еще 3 причуды API DataFrame в Apache Spark, о которых вы не знали

Чтобы сделать наши курсы по Apache Spark еще более полезными, мы рассказываем о неочевидных тонкостях этого фреймворка, знание которых позволит разработчику распределенных приложений использовать возможности этой технологии более эффективно. Сегодня…

Преобразования vs действия: под капотом операций Apache Spark

Автор Категория ,
Преобразования vs действия: под капотом операций Apache Spark

Продолжая разговор про вычислительные операции над датафреймами в Apache Spark, сегодня рассмотрим, какие преобразования (transformations) и действия (actions) чаще всего используются при разработке распределенных приложений и аналитике больших данных. Читайте…

Как быстрее обработать массив в Apache Spark 3.1: сравнение 9 разных методов

Автор Категория ,
Как быстрее обработать массив в Apache Spark 3.1: сравнение 9 разных методов

Apache Spark предоставляет для разработчика распределенных приложений множество возможностей, позволяя достигать одной целей разными способами. Чтобы проиллюстрировать это, сегодня рассмотрим бенчмаркинговое сравнение 9 методов обработки массивов в Spark 3.1, обращая…

Не только AirFlow: как упростить тестирование и отладку Big Data конвейеров из Spark-приложений с Dagster

Автор Категория , ,
Не только AirFlow: как упростить тестирование и отладку Big Data конвейеров из Spark-приложений с Dagster

Apache Spark + AirFlow – известная каждому дата-инженеру комбинация технологий Big Data для запуска сложных конвейеров обработки данных. Но совместное использование этих фреймворков ограничено недостатками AirFlow, часть из которых можно…

Машинное обучение с Apache Spark: битва пакетов или отличия библиотек MLLib от ML

Автор Категория , ,
Машинное обучение с Apache Spark: битва пакетов или отличия библиотек MLLib от ML

Сегодня рассмотрим Apache Spark с точки зрения Data Science специалиста: поговорим про сходства и отличия библиотек машинного обучения в этом фреймворке. Также ответим на вопрос «Spark ML vs MLLib», разберем,…

На заметку разработчику: 3 причуды Apache Spark и как с ними бороться

Автор Категория ,
На заметку разработчику: 3 причуды Apache Spark и как с ними бороться

Развивая наши курсы по Apache Spark, сегодня мы рассмотрим несколько особенностей, с разработчик которыми может столкнуться при выполнении обычных операции, от чтения архивированного файла до обращения к сервисам Amazon. Читайте…

Вспомнить все: 6 сегментов памяти Apache Spark и параметры их конфигурирования

Автор Категория ,
Вспомнить все: 6 сегментов памяти Apache Spark и параметры их конфигурирования

В этой статье продолжим говорить про обучение разработчиков Apache Spark и рассмотрим, какие сегменты памяти есть в этом Big Data фреймворке и как с ними работать наиболее эффективно. Читайте далее,…

3 достоинства и пара недостатков Apache Spark на Kubernetes

Автор Категория ,
3 достоинства и пара недостатков Apache Spark на Kubernetes

С учетом тренда на контейнеризацию при разработке и развертывании любых технологий, в т.ч. Big Data, сегодня рассмотрим плюсы и минусы совместного использования Apache Spark с Kubernetes. Читайте далее, как отправить…