Мы уже рассказывали про функции перераспределения данных по разделам coalesce() и repartition(). Сегодня сравним их работу с еще одним методом управления разделами в Apache Spark и разберем,...
Тонкости SparkSession в Apache Spark Structured Streaming
Может ли быть несколько сеансов в одном Spark-приложении с разной конфигурацией, зачем нужен метод foreachBatch() в структурированной потоковой передаче и чем он отличается от foreach(),...
Широковещательное соединение в Apache Spark SQL: ликбез и примеры
В этой статье для дата-инженеров и аналитиков данных, рассмотрим, что такое широковещательные соединение в Apache Spark SQL, чем оно полезно и как работает на практических...
Ускорение PySpark-приложений с PyArrow: лайфхаки Apache Spark для разработчиков
В рамках обучения разработчиков Spark-приложений и дата-инженеров, сегодня рассмотрим, как повысить эффективность выполнения Python-кода с помощью кросс-языковой платформы Apache Arrow. Что такое PyArrow и как...
MLOps на коленке: простое развертывание ML-модели с Apache Spark
Постоянно добавляя в наши курсы по Apache Spark и машинному обучению практические примеры для эффективного повышения квалификации Data Scientist’ов и инженеров данных, сегодня рассмотрим задачу...
MLOps и переносимость ML-моделей с помощью ONNX и Apache Spark
Обучая специалистов по Data Science, аналитиков и инженеров данных лучшим практикам MLOps, сегодня поговорим про переносимость моделей машинного обучения между разными этапами жизненного цикла ML-систем,...
Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3
Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных...
Аналитика больших данных с Apache Spark: UDF на Pyspark для вызова внешних REST API
Сегодня рассмотрим, как загружать большие объемы данных из REST API-сервисов с Apache Spark, написав на PySpark собственную UDF-функцию с преобразованием withColumn(), чтобы воспользоваться всеми преимуществами...
Анализ данных временных рядов с Apache Spark: пара примеров c Flint и Pandas
В этой статье для дата-инженеров и аналитиков рассмотрим пример мониторинга состояния электрогенераторов с помощью анализа данных временных рядов и ранжирования в pandas для предупреждения выхода...
От AWS EMR к Apache Spark 3 на Kubernetes в маркетплейсе Joom
Развивая наши курсы по Apache Spark и AirFlow для дата-инженеров и администраторов кластеров, сегодня рассмотрим кейс крупного маркетплейса Joom по переходу от 2-ой версии фреймворка...