Как применить триггеры Apache Spark Structured Streaming для пакетных заданий

Можно ли применять Apache Spark Structured Streaming для пакетных заданий и в каких случаях это целесообразно. Разбираемся, как устроена потоковая передача событий в Spark Structured...

Идемпотентность приложений Apache Spark Structured Streaming в Delta Lake

Продолжая недавний разговор про Apache Spark Structured Streaming, сегодня рассмотрим, как этот движок потоковой обработки данных помогает дата-инженеру реализовать идемпотентную запись в таблицы Delta Lake,...

Как ускорить потоковые приложения: 5 способов оптимизации Apache Spark Streaming

Разработка высоконагруженных систем потоковой аналитики больших данных включает не только написание кода, но и его оптимизацию. Поэтому разработчикам приложений Apache Spark Structured Streaming и дата-инженерам...

Как ускорить чтение из JDBC-источников для Apache Spark: 3 метода

Сегодня разберем тему, важную для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Почему чтение данных из реляционных баз в Apache Spark может быть медленным и как...

Тонкости потоковой обработки данных в Apache Spark: проблемы Structured Streaming

Сегодня рассмотрим важную тему для обучения дата-инженеров и разработчиков распределенных Spark-приложений. Как устроена потоковая обработка данных в Apache Spark Structured Streaming, зачем нужны водяные знаки...

Применение SeaTunnel для управления SQL-заданиями Apache Flink и Spark

Мы регулярно добавляем в наши курсы по Apache Flink и Spark для дата-инженеров полезные материалы и инструменты, которые помогают повысить эффективность разработки и эксплуатации приложений...

Динамическое партиционирование в Apache Spark

В этой статье для дата-инженеров и разработчиков распределенных приложений рассмотрим, что такое динамическое партиционирование таблиц в Apache Spark, зачем это нужно и как реализовать такие...

Поиск по сайту