Case Based Reasoning

Метод рассуждением по аналогии (Case Based Reasoning, CBR), предположения на основе аналогичных случаев, предположения по прецедентам Post Views: 19

Churn Rate

Churn Rate (уровень оттока клиента) — индикатор, показывающий процент пользователей, которые перестали пользоваться приложением (сервисом) или перестали быть вашим клиентом  в течение рассматриваемого периода. Для уменьшения оттока клиентов используют таргетированные маркетинговые кампании для удержания клиентов с помощью персональных бонусов, скидок и предложения. Для успешной компании уровень оттока клиентов (Churn Rate) должен быть ниже уровня притока новых клиентов (Growth Rate). Удержание существующих клиентов как правило обходится на 60-70% дешевле чем привлечение новых.   Для уменьшения показателя Churn Rate принимают следующие меры: Программы лояльности для маректинговых кампаний  и персонализированных  таргетированных скидок Поддержка существующих клиентов для улучшения пользовательского опыта и удержания постоянных клиентов Качественный сервис Рассчитывается как: Churn Rate = (Кол-во ушедших пользователей / Общее количество пользователей) * 100% Низкий Churn Rate увеличивает показатель Life Time Далее …

Cloudera

Cloudera CDH (Cloudera’s Distribution including Apache Hadoop) — дистрибутив Apache Hadoop с набором программ, библиотек и утилит, разработанных компанией Cloudera для больших данных (Big Data) и машинного обучения (Machine Learning), бесплатно распространяемый и коммерчески поддерживаемый для некоторых Linux-систем (Red Hat, CentOS, Ubuntu, SuSE SLES, Debian) [1]. Состав и архитектура Клаудера CDH Помимо классического Hadoop от Apache Software Foundation, состоящего из 4-х основных модулей (HDFS, MapReduce, Yarn и Hadoop Common), CDH также содержит дополнительные решения Apache для работы с большими данными и машинным обучением: инструменты для управления потоками данных (Flume, Sqoop); фреймворки распределённой и потоковой обработки, а также брокеры сообщений (Spark, Kafka) СУБД для Big Data аналитики (HBase, Hive, Impala); высокоуровневый процедурный язык для выполнения запросов к большим слабоструктурированным наборам данных Далее …

CRISP-DM

CRISP-DM, обработка данных, Big Data, Большие данные, жизненный цикл, Machine Learning, машинное обучение

CRISP-DM (от английского Cross-Industry Standard Process for Data Mining) — межотраслевой стандартный процесс исследования данных. Это проверенная в промышленности и наиболее распространённая методология, первая версия которой была представлена в Брюсселе в марте 1999 года, а пошаговая инструкция опубликована в 2000 году [1]. CRISP-DM описывает жизненный цикл исследования данных, состоящий из 6 фаз, от постановки задачи с точки зрения бизнеса до внедрения технического решения. Последовательность между фазами определена не строго, переходы могут повторяться от итерации к итерации [1]. Все фазы CRISP-DM делятся на задачи, по итогам каждой должен быть достигнут конкретный результат [2]. Рассмотрим подробнее фазы жизненного цикла исследования данных по CRISP-DM [3]: Понимание бизнеса (Business Understanding) – определение целей проекта и требований со стороны бизнеса. Затем эти знания конвертируются в Далее …