Case Based Reasoning

Метод рассуждением по аналогии (Case Based Reasoning, CBR), предположения на основе аналогичных случаев, предположения по прецедентам

Machine Learning

Machine Learning, машинное обучение

Machine learning — множество математических, статистических и вычислительных методов для разработки алгоритмов, способных решить задачу не прямым способом, а на основе поиска закономерностей в разнообразных входных данных. Что такое Machine Learning Общий термин «Machine Learning» или «машинное обучение» обозначает множество математических, статистических и вычислительных методов для разработки алгоритмов, способных решить задачу не прямым способом, а на основе поиска закономерностей в разнообразных входных данных [1].  Решение вычисляется не по четкой формуле, а по установленной зависимости результатов от конкретного набора признаков и их значений. Например, если каждый день в течении недели земля покрыта снегом и температура воздуха существенно ниже нуля, то вероятнее всего, наступила зима. Поэтому машинное обучение применяется для диагностики, прогнозирования, распознавания и принятия решений в различных прикладных сферах: от медицины Далее …

Естественная классификация

Естественная классификация — производится по существенным признакам, характеризующим внутреннюю общность предметов и явлений.

Искусственная классификация

Искусственная классификация — производится по внешнему признаку и служит для придания множеству предметов (процессов, явлений) нужного порядка

Классификация

отнесение объектов (наблюдений, событий) к одному из заранее известных классов

Машинное обучение

Машинное обучение (Machine Learning) — класс методов искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться

Ошибка распознавания

отношение объектов, неправильно классифицированных в процессе обучения, к общему количеству объектов набора данных, которые принимали участие в обучении

Прогнозирование

установление функциональной зависимости между зависимыми и независимыми переменными

Точность распознавания

отношение объектов, правильно классифицированных в процессе обучения, к общему количеству объектов набора данных, которые принимали участие в обучении