Big Data

Big Data (Большие данные) Big Data — данные большого объема, высокой скорости накопления или изменения и/или разновариантные информационные активы, которые требуют экономически эффективных, инновационных формы обработки данных, которые позволяют получить расширенное  понимание информации, способствующее принятию решений и автоматизации процессов. Для каждой организации или компании существует предел объема данных (Volume) которые компания или организация способна обрабатывать одновременно для целей аналитики, как правило этот объем ограничен объемами оперативной памяти серверов корпоративных приложений и баз данных и необходимостью партиционирования (Partitioning)  хранимых данных. Для каждой организации или компании существуют физические ограничения на количество транзакций/ объем данных (Velocity) , которая корпоративныя система может обработать или передать за единицу времени вследствии ограничений scale in архитектуры.  Традиционные корпоративные системы (реляционные) могут использовать эффективно только структурированные источники поступления Далее …

Cloudera

Cloudera CDH (Cloudera’s Distribution including Apache Hadoop) — дистрибутив Apache Hadoop с набором программ, библиотек и утилит, разработанных компанией Cloudera для больших данных (Big Data) и машинного обучения (Machine Learning), бесплатно распространяемый и коммерчески поддерживаемый для некоторых Linux-систем (Red Hat, CentOS, Ubuntu, SuSE SLES, Debian) [1]. Состав и архитектура Клаудера CDH Помимо классического Hadoop от Apache Software Foundation, состоящего из 4-х основных модулей (HDFS, MapReduce, Yarn и Hadoop Common), CDH также содержит дополнительные решения Apache для работы с большими данными и машинным обучением: инструменты для управления потоками данных (Flume, Sqoop); фреймворки распределённой и потоковой обработки, а также брокеры сообщений (Spark, Kafka) СУБД для Big Data аналитики (HBase, Hive, Impala); высокоуровневый процедурный язык для выполнения запросов к большим слабоструктурированным наборам данных Далее …

CRISP-DM

CRISP-DM, обработка данных, Big Data, Большие данные, жизненный цикл, Machine Learning, машинное обучение

CRISP-DM (от английского Cross-Industry Standard Process for Data Mining) — межотраслевой стандартный процесс исследования данных. Это проверенная в промышленности и наиболее распространённая методология, первая версия которой была представлена в Брюсселе в марте 1999 года, а пошаговая инструкция опубликована в 2000 году [1]. CRISP-DM описывает жизненный цикл исследования данных, состоящий из 6 фаз, от постановки задачи с точки зрения бизнеса до внедрения технического решения. Последовательность между фазами определена не строго, переходы могут повторяться от итерации к итерации [1]. Все фазы CRISP-DM делятся на задачи, по итогам каждой должен быть достигнут конкретный результат [2]. Рассмотрим подробнее фазы жизненного цикла исследования данных по CRISP-DM [3]: Понимание бизнеса (Business Understanding) – определение целей проекта и требований со стороны бизнеса. Затем эти знания конвертируются в Далее …

Data Lake

Data Lake (Озеро данных) — метод хранения данных системой или репозиторием в натуральном (RAW) формате, который предполагает одновременное хранение данных в различных схемах и форматах, обычно blob (binary large object) объект или файл. Идея озера данных в том чтобы иметь логически определенное, единое хранилище всех данных в организации (enterprise data) начиная от сырых, необработанных исходных данных (RAW data) до предварительно обработанных (transformed) данных испольуемых для различных задач (отчеты, визуализация, аналитика и машинное обучение. Data Lake (озеро данных) — включает структурированные данные из реляционных баз данных (строки и колонки), полуструктурированные данные (CSV, лог файлы, XML, JSON), неструктурированные данные (почтовые сообщения , документы, pdf файлы) и даже бинарные данные (видео, аудио, графические файлы). Data Lake (озеро данных) — кроме методов хранения и Далее …

Data Mining

Data Mining — процесс поиска в сырых необработанных данных интересных, неизвестных, нетривиальных взаимосвязей и полезных знаний, позволяющих интерпретировать и применять результаты для принятия решений в любых сферах  человеческой деятельности. Представляет собой совокупность методов  визуализации, классификации, моделирования и прогнозирования, основанные на применении деревьев решений, искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования, ассоциативной памяти, нечёткой логики.   Дополнительно о Data Mining на Википедии

Hadoop

хадуп, Hadoop

Hadoop – это свободно распространяемый набор утилит, библиотек и фреймворк для разработки и выполнения распределённых программ, работающих на кластерах из сотен и тысяч узлов. Эта основополагающая технология хранения и обработки больших данных (Big Data) является проектом верхнего уровня фонда Apache Software Foundation. Из чего состоит Hadoop: концептуальная архитектура Изначально проект разработан на Java в рамках вычислительной парадигмы MapReduce, когда приложение разделяется на большое количество одинаковых элементарных заданий, которые выполняются на распределенных компьютерах (узлах) кластера и сводятся в единый результат [1]. Проект состоит из основных 4-х модулей: Hadoop Common – набор инфраструктурных программных библиотек и утилит, которые используются в других решениях и родственных проектах, в частности, для управления распределенными файлами и создания необходимой инфраструктуры [1]; HDFS – распределённая файловая система, Hadoop Далее …

HDFS

HDFS (Hadoop Distributed File System) — распределенная файловая система Hadoop

HDFS (Hadoop Distributed File System) — распределенная файловая система Hadoop для хранения файлов больших размеров с возможностью потокового доступа к информации, поблочно распределённой по узлам вычислительного кластера [1], который может состоять из произвольного аппаратного обеспечения [2]. Hadoop Distributed File System, как и любая файловая система – это иерархия каталогов с вложенными в них подкаталогами и файлами [3]. Применение Hadoop Distributed File System HDFS – неотъемлемая часть Hadoop, проекта верхнего уровня Apache Software Foundation, и основа инфраструктуры больших данных (Big Data). Однако, Hadoop поддерживает работу и с другими распределёнными файловыми системами, в частности, Amazon S3 и CloudStore. Также некоторые дистрибутивы Hadoop, например, MapR, реализуют свою аналогичную распределенную файловую систему – MapR File System [1]. HDFS может использоваться не только для запуска MapReduce-заданий, но Далее …

HDInsight

HDInsight — это корпоративный сервис с открытым кодом от Microsoft для облачной платформы Azure, позволяющий работать с кластером Apache Hadoop в облаке в рамках управления и аналитической работы с большими данными (Big Data).  Экосистема HDInsight Azure HDInsight – это облачная экосистема компонентов Apache Hadoop на основе платформы данных Hortonworks Data Platform (HDP) [1], которая поддерживает несколько версий кластера Hadoop. Каждая из версий создает конкретную версию платформы HDP и набор компонентов, содержащихся в этой версии. C 4 апреля 2017 г. Azure HDInsight по умолчанию использует версию кластера 3.6 на основе HDP 2.6. Кроме основных 4-х компонентов Hadoop (HDFS, YARN, Hadoop Common и Hadoop MapReduce), в состав версии 3.6 также входят следующие решения Apache Software Foundation [2]: Pig — высокоуровневый язык обработки данных и фреймворк Далее …

Hortonworks

Большие данные, Big Data, Hadoop, Apache, администрирование, инфраструктура, дистрибутив хортонворкс

Hortonworks Data Platform (HDP) — дистрибутив Apache Hadoop с набором программ, библиотек и утилит Apache Software Foundation, адаптированных компанией Hortonworks для больших данных (Big Data) и машинного обучения (Machine Learning), бесплатно распространяемый и коммерчески поддерживаемый [1]. Помимо HDP, компания Hortonworks предлагает еще другие продукты для Big Data и Machine Learning, также основанные на проектах Apache Software Foundation [2]: Hortonworks DataFlow (HDF) –NiFi, Storm и Kafka; Сервисы Hortonworks DataPlane: Apache Atlas и Cloudbreak для интеграции со сторонними решениями. Состав и архитектура Hortonworks Кроме базового набора модулей Hadoop от Apache Software Foundation (HDFS, MapReduce, Yarn и Hadoop Common), HDP также содержит дополнительные решения Apache для работы с большими данными и машинным обучением: Flume, Sqoop, Falcon, NFS, WebHDFS для управления потоками данных; Kerberos, Далее …

MapR

мапр, MapRDataTechnologies

MapR Convergent Data Platform (MapRCDP) — дистрибутив Apache Hadoop с набором программ, библиотек и утилит Apache Software Foundation, а также средств собственной разработки американской компании MapR для больших данных (Big Data) и машинного обучения (Machine Learning) [1]. Существует три версии MapRCDP: Community Edition (M3) — бесплатная версия сообщества; Enterprise Edition (M5) — обеспечивает высокую доступность и защиту данных, включая мультиузловый NFS; Enterprise Database Edition (M7) – включает данные структурированных таблиц изначально на уровне хранилища и предоставляет гибкую базу данных NoSQL. MapRCDP может быть установлен на многих версиях Red Hat Enterprise Linux, CentOS, Ubuntu, Oracle Linux и SUSE.  Состав и архитектура MapR Как и другие популярные дистрибутивы Hadoop (Cloudera, HortonWorks, ArenaData), кроме его основных модулей, MapR содержит дополнительные продукты для работы Далее …

Блокчейн

Блокчейн, бизнес, банки, Big Data, Большие данные

Блокчейн (от английского blockchain, block chain – цепочка блоков) — выстроенная по определённым правилам непрерывная последовательность информационных блоков (связный список). Копии цепочек блоков хранятся на множестве разных, независимых друг от друга, компьютеров [1]. Поэтому данную цифровую цепочку называют технологией распределенного реестра [2]. История появления блокчейна Цифровизация финансовой сферы стала родоначальником термина «блокчейн»: впервые он появился в 2008 году, когда была реализована популярная криптовалюта Биткойн. Однако, блокчейн – это не только транзакцит в криптовалютах, эта технология может использоваться в любых взаимосвязанных информационных блоках и реестрах [1]. Зачем нужен блокчейн Блокчейн позволяет автоматизировать процесс заверения данных и подтверждения событий за счет распределенного характера хранения информации, неподконтрольной конкретному регулятору. Поскольку распределенный реестр цепочек информационных блоков хранится на разных компьютерах, проверить наличие и целостность этих Далее …

Большие данные

Большие данные (Big Data)  Большие данные — данные большого объема, высокой скорости накопления или изменения и/или разновариантные информационные активы, которые требуют экономически эффективных, инновационных формы обработки данных, которые позволяют получить расширенное  понимание информации, способствующее принятию решений и автоматизации процессов. Для каждой организации или компании существует предел объема данных (Volume) которые компания или организация способна обрабатывать одновременно для целей аналитики, как правило этот объем ограничен объемами оперативной памяти серверов корпоративных приложений и баз данных и необходимостью партиционирования (Partitioning)  хранимых данных. Для каждой организации или компании существуют физические ограничения на количество транзакций/ объем данных (Velocity) , которая корпоративныя система может обработать или передать за единицу времени вследствии ограничений scale in архитектуры.  Традиционные корпоративные системы (реляционные) могут использовать эффективно только структурированные источники поступления Далее …

Большие данные (Big Data)

Большие данные (Big Data) – совокупность непрерывно увеличивающихся объемов информации одного контекста, но разных форматов представления, а также методов и средств для эффективной и быстрой обработки [1].   Big Data: какие данные считаются большими Благодаря экспоненциальному росту возможностей вычислительной техники, описанному в законе Мура [2], объем данных не может являться точным критерием того, являются ли они большими. Например, сегодня большие данные измеряются в терабайтах, а завтра – в петабайтах. Поэтому главной характеристикой Big Data является степень их структурированности и вариантов представления. Яркая иллюстрация больших данных – это непрерывно поступающая информация с датчиков или устройств аудио- и видеорегистрации, потоки сообщений из соцсетей, метеорологические данные, координаты геолокации абонентов сотовой связи и т.п. [3]. Например, вот здесь мы рассказывали, как ПАО «Газпромнефть» собирал Далее …

Мультиколлинеарность

Мультиколлинеарность — корреляция независимых переменных [1], которая затрудняет оценку и анализ общего результата [2]. Когда независимые переменные коррелируют друг с другом, говорят о возникновении мультиколлинеарности. В машинном обучении (Machine Learning) мультиколлинеарность может стать причиной переобучаемости модели, что приведет к неверному результату [3]. Кроме того, избыточные коэффициенты увеличивают сложность модели машинного обучения, а значит, время ее тренировки возрастает. Еще мультиколлинеарность факторов плоха тем, что математическая модель регрессии содержит избыточные переменные, а это значит [4]: осложняется интерпретация параметров множественной регрессии как величин действия факторов, параметры регрессии теряют смысл и следует рассматривать другие переменные; оценки параметров ненадежны – получаются большие стандартные ошибки, которые меняются с изменением объема наблюдений, что делает модель регрессии непригодной для прогнозирования. Для оценки мультиколлинеарности используется матрица парных коэффициентов корреляции, у Далее …

Цифровая трансформация

Цифровая трансформация (Digital Transformation) —  переход компании к Цифровому Бизнесу через изменение Культуры организации и внедрение новых информационных технологий, расширяющих границы организации и позволяющих формировать свою экосистему.