Преподаватели

Школа Больших Данных собрала для вас высокопрофессиональных преподавателей и отраслевых экспертов с многолетним опытом практической работы в администрировании Apache Hadoop, Spark, Kafka и других кластерных решений, Data Science, Data Mining, машинном обучении, облачных вычислениях, а также прочих технологий Big Data.
prepod-n-kommisarenko.jpg

Комиссаренко Николай

Томский Политехнический Институт (Томск, 1994)
Профессиональные компетенции:
  • Сертифицированный тренер Arenadata
  • Построение Data Lake и аналитика больших данных на решениях Arenadata, Cloudera, HortonWorks, EMC (Hadoop, Isilon), Pivotal, облачные решения, cистемы хранения данных уровня enterprise, информационная безопасность
  • EMC Certified Instructor (2007)
  • Dell EMC Specialist – Cloud Architect (2006)
  • Dell EMC XtremeIO, Isilon – Storage Aministrator, Data Science Specialist (2006)
  • IT Service Manager (2006)
  • Certified Information System Security Professional (CISSP) (2006 -2010)
  • Certified Information Security Manager (CISM)
prepod-mihail-korolev.jpg

Королев Михаил

МГУ им. М.В. Ломоносова (Москва, 1992)
Профессиональные компетенции:
prepod-ermilov-dmitrij-mihajlovich.jpg

Ермилов Дмитрий

Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Ведущий Data Scientist в ФГУП “Центр информационных технологий”, Москва
  • Руководитель программ в Университете искусственного интеллекта, Москва.
  • Кандидат наук (2017 год, Московский государственный университет им. М.В. Ломоносова, Москва)
prepod-oleg-konorev.jpg

Конорев Олег

Академия Федеральной службы безопасности Российской Федерации (Москва, 2012)
Профессиональные компетенции:
  • Руководитель группы Data Science в НИИ “Квант”, Москва
  • Computer vision (CV) – решение задач по классификации и детектировании объектов на фото и видео, идентификации человека,  сегментации изображений и распознаванию текста с библиотеками OpenCV, Tensorflow API и архитектурами нейронных сетей  Yolo, SSD, fRCNN, U-net и пр.
  • Natural language processing (NLP) – решение задач по классификации текстов, извлечению именованных сущностей (NER) и ключевых слов с библиотеками gensim, nltk, fasttext, spacy и др. Построение различных архитектур на основе искусственных нейронных сетей с использованием различных представлений слов (Embedding, Word2Vec) и готовых нейросетевых решений (Bert, fastai)
  • Time series analysis – решение задач обработки, анализа и классификации аудио сигналов с библиотеками librosa, ffmpeg и различных архитектур нейронных сетей, а также предсказание значений временных рядов (time series forecasting) в приложении к котировкам активов с использованием классических решений (ARMA, ARIMA) и моделей на базе сверточных нейронных сетей (CNN), рекуррентных нейронных сетей (LSTM,GRU) и их комбинаций.
  • Проекты сегментации сигналов с различных датчиков и приборов и распознавания речи (speech-to-text) с облачными сервисами Yandex и Google.

Записаться на курс

Остались вопросы по формату обучения, содержанию курсов, стоимости, сертификатам или другим важным моментам?
Оставьте номер телефона или e-mail и мы оперативно проконсультируем вас в течение рабочего дня.