Segmentation image

Segmentation image – технология, связанная с компьютерным зрением (computer vision) и обработкой изображений, заключающаяся в обнаружении объектов определенных классов на цифровых изображениях и видео. Причем, обнаружение объектов заключается в определении класса (раскраска) каждого пикселя на цифровом изображении или на каждом кадре видеопотока.     Пример кода вы можете посмотреть на GitHub MachineLearningIsEasy        

SEMMA

SEMMA, Data Mining, обработка данных, CRISP-DM, анализ данных, стандарты ИАД

SEMMA (аббревиатура от английских слов Sample, Explore, Modify, Model и Assess) – общая методология и последовательность шагов интеллектуального анализа данных (Data Mining), предложенная американской компанией SAS, одним из крупнейших производителей программного обеспечения для статистики и бизнес-аналитики, для своих продуктов [1].  Зачем нужен стандарт SEMMA В отличие от другого широко используемого стандарта Data Mining, CRISP-DM, SEMMA фокусируется на задачах моделирования, не затрагивая бизнес-аспекты. Тем не менее, этот стандарт позиционируется как унифицированный межотраслевой подход к итеративному процессу интеллектуального анализа данных [1]. Эта методология не навязывает каких-либо жестких правил, однако, используя ее разработчик располагает научными методами построения концепции проекта, его реализации и оценки результатов проектирования [2].Подход SEMMA сочетает структурированность процесса Data Mining и логическую организацию инструментальных средств для поддержки каждой операции обработки и анализу Далее …

Sequence

файл последовательностей, формат Sequence File, Big Data, Большие данные, архитектура, обработка данных, Hadoop

Sequence File (файл последовательностей) – это двоичный формат для хранения Big Data в виде сериализованных пар ключ/значение в экосистеме Apache Hadoop, позволяющий разбивать файл на участки (порции) при сжатии. Это обеспечивает параллелизм при выполнении задач MapReduce, т.к. разные порции одного файла могут быть распакованы и использованы независимо друг от друга [1]. Наряду с Apache Avro, Sequence File считается линейно-ориентированным (строковым) форматом Big Data, в отличие от колоночных (столбцовых) форматов (RCFile, Apache ORC и Parquet). Структура Sequence-файла Sequence File состоит из заголовка, за которым следует одна или несколько записей. Заголовок файла последовательности (Sequence File Header) имеет следующую структуру: первые 3 байта заголовка Sequence-файла занимают символы «SEQ», что идентифицирует файл последовательности. Далее следует 1 байт, представляющий фактический номер версии (например, SEQ4 или Далее …